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Université Libre de Bruxelles and International Solvay Institutes

ULB Campus, Plaine C.P. 231, B-1050 Bruxelles, Belgium

E-mail: nbouatta@ulb.ac.be, jevslin@ulb.ac.be

Carlo Maccaferri

Theoretische Natuurkunde, Vrije Universiteit Brussel,
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Abstract: We present new solutions of noncommutative gauge theories in which coinci-

dent unstable vortices expand into unstable circular shells. As the theories are noncommu-

tative, the naive definition of the locations of the vortices and shells is gauge-dependent,

and so we define and calculate the profiles of these solutions using the gauge-invariant

noncommutative Wilson lines introduced by Gross and Nekrasov. We find that charge 2

vortex solutions are characterized by two positions and a single nonnegative real number,

which we demonstrate is the radius of the shell. We find that the radius is identically zero

in all 2-dimensional solutions. If one considers solutions that depend on an additional com-

mutative direction, then there are time-dependent solutions in which the radius oscillates,

resembling a braneworld description of a cyclic universe. There are also smooth BIon-like

space-dependent solutions in which the shell expands to infinity, describing a vortex ending

on a domain wall.
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1. Introduction

Noncommutative gauge theories with or without adjoint scalars and/or fundamental

fermions are known to admit unstable vortex solutions. The shapes and positions of these

noncommutative vortices are difficult to describe or even define, as the positions of the

gauge field, scalars and fermions are gauge dependent. In ref. [1] the authors introduced

two kinds of gauge-invariant operators, a fermion bilinear and also a trace of the gauge

field in momentum space which allow one to define and measure the positions of these

configurations in a gauge-invariant way. They arrived at the interesting conclusion that

the positions of a set of vortices are the eigenvalues of its Weyl-transformed Wilson lines.

In this note we demonstrate that, if a vortex charge is greater than one, then there

are new gauge-invariant quantities which are distinguished by both gauge-invariant op-

erators. We find that the equations of motion demand that these quantities vanish in

the 2-dimensional theories described in ref. [1], but not in higher-dimensional analogues.

We find the positions of these new solutions by calculating the Fourier transform of the

trace of the momentum space wavefunction, which following [1] is defined to be a kind of

noncommutative Wilson loop.

In the case of coincident charge 2 vortices, we find solutions in which a codimension

2 vortex expands into a thin circular domain wall reminiscent of the commutative solitons

in refs. [2 – 4]. Unlike non-BPS semilocal vortices [5, 6] in commutative gauge theories, the

domain wall appears to have a sharp outer boundary, although a change in normalization of

the Wilson loops would smoothen this boundary. There is precisely one new nonnegative

real gauge-invariant quantity in the charge 2 case, which we show corresponds to the

radius of this shell. The radius is proportional to the commutator of the gauge fields in
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the transverse directions, analogously to the construction of higher dimensional D-branes

from lower dimensional D-branes with noncommuting position matrices, in keeping with

the identification of the gauge field eigenvalues and the positions in refs. [7, 1]. In solutions

with dependence on an additional commutative spatial dimension, this circle grows to

infinity, reaching infinity at a finite position, and so describes a vortex ending on a domain

wall. If instead one considers time-dependent solutions with 2 noncommutative spatial

dimensions, then the radius oscillates periodically in the commutative time direction. If

one includes fundamental fermions, then when the radius vanishes there are two fermion

zero modes, of which one is lifted by a nonvanishing radius.

2. Vortices in the 2D theory

2.1 The gauge theory

Consider bosonic string theory on the space M24 × R
2 where M24 is an arbitrary 24-

manifold. Wrap a single spacefilling D25-brane on the entirety of spacetime, and consider

a B-field that is constant and has both legs along R
2. The spectrum of open strings ending

on this D25-brane includes massless vectors which are gauge bosons for a U(1) gauge

symmetry.

The U(1) gauge bundle has a curvature F . However the open strings couple to F in the

combination B + F , which means that covariant derivatives acting on charged fields have

contributions not only from the vector potential iA of F , but also for that of B. We will

refer to the total vector potential as C. In particular, even if F = 0 then the wavefunction

of a particle traveling around a loop γ gains a phase equal to the loop-integral of C which

is equal by Stoke’s theorem to the integral of B on the interior D of the loop
∫

γ

C =

∫

D

dC =

∫

D

B + F =

∫

D

B (2.1)

where ∂D = γ. Equivalently, if x and y are a set of coordinates on R
2, then if a charged

particle moves first in the x direction and then in the y direction, its phase will not be the

same as if it moved first in the y direction and then in the x direction. For this reason

this theory is called a noncommutative U(1) gauge theory. In particular, the fact that

translations in x and y do not commute means that the x and y translation generators,

the momenta, do not commute. In turn this implies that the operators x and y themselves

do not commute.

Although the R
2 direction is noncompact, if we are interested in solutions which

are normalizable in the R
2 direction we may dimensionally reduce the theory to a 24-

dimensional theory on M24. Consider two of the 26-dimensional fields, the adjoint scalar

φ and the U(1) gauge field A. At each point in the 24-dimensional space M24, φ and A are

functions of x and y. As they are normalizable, these functions may be expanded in terms

of Laguerre polynomials, which are a countably infinite basis of functions. The coefficients

of these polynomials may be arranged in two infinite-dimensional matrices, which by an

abuse of notation we will also refer to as φ and A such that the noncommutativity of the

x and y dependence is captured by the noncommutativity of matrix multiplication. We
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can even write the full connection C as a matrix. These infinite-dimensional matrices are

known as the Weyl transforms of the R
2-dependent fields.

iA and C are both vectors, and so are described by 26 Hermitian matrices, one for

each component. We will define

A = Ax + iAy, A = Ax − iAy, C = Cx + iCy, C = Cx − iCy. (2.2)

Rescaling the R
2 coordinates so that the commutator of x and y is equal to i, corresponding

to θ = 1 in the usual parametrization, one finds that x + iy and x − iy represent the

generators a and a† of the Heisenberg algebra. Therefore we may choose a convention in

which

C = a† − iA, C = a + iA. (2.3)

Recall that iAx, iAy, Cx and Cy are Hermitian, and so iA, iA, C and C will generally not

be Hermitian and need not even be diagonalizable.

The Weyl transformed A is the connection for a 24-dimensional U(H) gauge theory.

If all fields, like A and φ, transform in the adjoint of the gauge group then the center

U(1) ⊂ U(H) acts trivially. This means that the fields form representations of the smaller

gauge group

PU(H) =
U(H)

U(1)
(2.4)

and only the PU(H) gauge bundle needs to be well-defined. The effective gauge group

PU(H) is an Eilenberg-MacLane space with nontrivial homotopy group

π2(PU(H)) = Z (2.5)

and so nontrivial gauge bundles are characterized entirely by an integral 3-class H, which

will be identified with the NS 3-form.

The gauge groups U(H) and PU(H) only appear after the dimensional reduction from

26 to 24 dimensions, and so it appears that the gauge bundle is fibered over only a 24-

dimensional subspace of the 26-dimensional spacetime, although in principal its charac-

teristic class H is defined on the entire bulk. This is because we chose to start with a

single D25-brane. The Sen conjecture [10] has taught us that the open strings on a single

D25-brane do not capture all of the physics, one needs an infinite stack. In the AdS/CFT

correspondence [11 – 13] this corresponds to the fact that the open strings that end on an

infinite stack of D-branes know everything about the closed string sector. Therefore to

capture all of the information about the string theory, one would have needed an infinite

stack of D25-branes, which would have led to the desired PU(H) bundle over the bulk.

This may appear to be in contradiction with the possibility that the H flux is nontrivial

around some cycle, which would disallow a spacefilling brane, indeed the Sen picture breaks

down in that case and it is harder to find the closed strings in the open string physics.

We will first consider configurations which are constant on M24, yielding a 2-

dimensional Euclidean gauge theory which is dimensionally reduced to a 0-dimensional

matrix model via the Weyl transform. Let

w =
1√
2
(x + iy), w =

1√
2
(x − iy) (2.6)
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be complex coordinates on the R
2. We will use the symbols ∂ and ∂ for derivatives which

are covariant with respect to the connection of the B field but not the gauge field in the

directions w and w respectively. We have seen that these represent the usual raising and

lower operators in the Heisenberg algebra.

Using these derivatives and the U(1) gauge potential A, which is dimensionally reduced

to a U(H) gauge potential in the matrix model, we may define a U(H) field strength

Fww = ∂A − ∂A − i[A,A] = −i[C,C] − i. (2.7)

In terms of this field strength, and the adjoint scalar φ we may write the action for our

matrix model following, for example, ref. [8]

S = 2πTrH(−1

4
FijF

ij − [C,φ][C,φ] − V (φ)) (2.8)

where V (φ) is a potential function with a local maximum at φ = 0 and a local minimum

at φ = 1.

We may now obtain equations of motion by varying the action with respect to φ, C

and C. In the square of F , the [C,C ] and 1 terms are both topological and so do not

contribute to the equations of motion, thus we need only consider the [C,C]2 term.

Varying φ one obtains the equation of motion

0 = [C, [C,φ]] − V ′(φ). (2.9)

Varying C one finds

[C, [C,C] − [φ, [C,φ]] = 0 (2.10)

and varying C we find its transpose

[C, [C,C ] − [φ, [C,φ]] = 0. (2.11)

Now we are ready to choose an ansatz and solve these equations. The adjoint scalar will

not play a crucial role in the solutions that we will present, they will all have analogues in

a truncated theory in which one omits the φ field entirely.

2.2 Two-dimensional solutions and symmetries

We will be interested in an solutions describing N point-like branes. This corresponds to

the ansatz

φ = φ∗(1 − PN ) (2.12)

where 1 is the identity matrix, PN is the projector onto an N -dimensional subspace C
N ⊂ H

and φ∗ is the stable minimum of V (φ). In ref. [14] the authors demonstrated that in this

ansatz the potential term vanishes in the φ equation of motion (2.9).

The projector decomposes the Hilbert space H into its eigenspaces, a C
N which it

annihilates and the remaining H on which it has eigenvalue one. We can use this decom-

position to decompose C and C in terms of an N ×N , an N ×∞, an ∞×N and an ∞×∞
submatrix

C =

(

α β

γ δ

)

, C =

(

α† γ†

β† δ†

)

. (2.13)
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Now we will insert this decomposition into the equations of motion. In terms of the

decomposition we can evaluate the commutators

[C,φ] =

(

0 β

−γ 0

)

, [C,φ] =

(

0 γ†

−β† 0

)

. (2.14)

Inserting these commutators into the φ equation of motion (2.9) we find

0 = [C, [C,φ]] =

(

−γ†γ − β†β α†β − βδ†

−δ†γ + γα† β†β + γ†γ

)

. (2.15)

The upper left entry is negative-definite and the lower right entry is positive-definite.

Neither is zero unless every component of the matrices β and γ vanishes, which leaves

C =

(

α 0

0 δ

)

, C =

(

α† 0

0 δ†

)

. (2.16)

When β = γ = 0 every block in (2.15) vanishes and so eq. (2.9) is satisfied.

Next we need to solve the C and C equations of motion (2.10) and (2.11). The fact

that C and C are block-diagonal means that these equations of motion can be decomposed

into the equations of motion for the N × N block and the equations of motion for the

∞×∞ block, which each need to be solved separately.

We will start with the easier, finite-dimensional N × N block. The C equation of

motion (2.11) for this block is

0 = [α, [α†, α]]. (2.17)

Note that [α†, α] is diagonalizable because it is Hermitian. Choose a basis for C
N in which

[α†, α] is diagonal. Now divide C
N into two yet smaller spaces C

J and C
K such that C

J

is the zero eigenspace of [α†, α]. We can rescale the coordinates in C
K so that [α†, α]

is the K × K identity matrix. α also respects this block diagonalization as a result of

eq. (2.17), and therefore so does α†. This means that α and α† generate a K-dimensional

representation of the Heisenberg algebra. The Heisenberg algebra only has representations

in dimension 0 and ∞. If we assume that N is finite, so that we are looking for stacks

of finite numbers of solitons, then K ≤ N and so K is also finite. Therefore α and α†

generate the zero-dimensional representation of the Heisenberg algebra, so K = 0 and

J = N − K = N . This means that the zero eigenspace of [α†, α] is all of C
N , and so

[α†, α] = 0 (2.18)

in other words α and α† are simultaneously diagonalizable [15]. We will name their eigenval-

ues αi and αi respectively. When we consider solutions with dependence on commutative

directions, eq. (2.17) will no longer be satisfied and we will find that α and α† do not

necessarily commute.

Next we treat the lower-right ∞×∞ block. Now the C equation of motion (2.11) is

0 = [δ, [δ†, δ]] (2.19)
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which implies that δ and [δ†, δ] are simultaneously diagonalizable. While they can be

simultaneously diagonalized, in what we will identify as the coherent state basis, we will

not diagonalize them. Instead, we recall that

C = a† − iA, C = a + iA (2.20)

and so if we are interested in configurations in which the U(1) gauge fields A and A are

normalizable, without caring about the normalizability of the noncommutativity gauge

fields a and a†, then far down the matrix C and C will need to converge to a and a†

respectively. Therefore we can treat A and A as small perturbations and solve (2.19)

order by order in A. The different orders in the perturbation cannot mix far down the

matrix, or else A would diverge. Notice that this approach differs from that of ref. [1],

who did not impose (2.20) but rather imposed the weaker condition that the covariant

derivative satisfy a kind of Leibniz rule and that the energy be finite. This led them to

extra superselection sectors of solutions, in which C contains a direct sum of N copies of

a†. These superselection sectors were interpreted as U(N) noncommutative gauge theories,

generalizing the U(1) theory considered here.

Substituting (2.20) into the equation of motion (2.19) we find

0 = [a + iA, [a† − iA, a + iA]] = [a + iA,−1 − η + [A,A]] (2.21)

where we have defined the Hermitian operator

η = i[A, a†] − i[a,A]. (2.22)

Now we may expand eq. (2.21) in powers of A and take the linear term

0 = i[A,−1] − [a, η] = −[a, η] (2.23)

which implies that η is a function of a

η = f(a). (2.24)

However η is Hermitian which implies that

f(a) = η = η† = f̄(a†) (2.25)

and so f is a constant c times the identity matrix. Moreover η is proportional to A, which

goes to zero far down the matrix, and so the constant of proportionality c must be zero,

yielding

0 = η = i[A, a†] − i[a,A]. (2.26)

We will now restrict our attention to A of the form

A = [Q, a] (2.27)

and try to solve for Q. This will give us a complete list of the continuous symmetries of

the solution that act via the adjoint representation of a Lie group generated by the Q.

Substituting eq. (2.27) into (2.26) yields

0 = [[iQ, a], a†] + [a, [iQ†, a†]] = −i[[a, a†], Q] − i[[a†, Q], a] − i[a, [a†, Q†]] (2.28)
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where the first term on the right hand side vanishes because [a, a†] is proportional to the

identity. This leaves

[a, [a†, Q]] = [a, [a†, Q†]] (2.29)

and, subtracting the right hand side from the left, one finds

[a, [a†, Q − Q†]] = 0. (2.30)

As a result [a†, Q−Q†] is a function f of a. The commutator with a† may also be written

as the derivative with respect to a, and so

ψ(a) =
∂

∂a
(Q − Q†). (2.31)

The most general solution to this is

Q − Q† = λ(a) + ρ(a†) (2.32)

where λ and ρ are two functions, which establishes

Q = H + g(a) + h(a†) (2.33)

where H is Hermitian, and g and h are arbitrary functions.

We may now interpret each term in Q physically as a deformation of the solution

δ = a. The Hermitian terms correspond to ordinary U(H) gauge transformations. If g and

h are order one polynomials then they describe a translation of the system. Order two

terms in g and h are Bogoliubov transformations. Higher degree polynomials are even less

normalizable than the Bogoliubov transform.

3. Adding commutative dimensions

In the last section we searched for solutions to a 2-dimensional noncommutative U(1) gauge

theory, which is equivalent to a 0-dimensional infinite-dimensional PU(H) matrix model.

We found all solutions in which the adjoint scalar φ is a finite codimension projector and the

gauge field can be written as a commutator of something with an annihilation operator. We

found the known solutions, their translations plus a series of deformations of these solutions

by nonnormalizable symmetries that generalize Bogoliubov transformations. We identified

these solutions with stacks of N 0-dimensional branes in a 2-dimensional background. We

reproduced the fact that the blocks of each component of the connection which is in the

kernel of φ are simultaneously diagonalizable and their eigenvalues α and α are arbitrary.

In the remainder of this paper we will be interested in a generalization of this system

which includes d commutative directions. In this new setting the complex combinations

of the gauge field in the two noncommutative directions C and C are sometimes not diag-

onalizable when multiple branes are coincident. We will see that in the case of charge 2

vortices the nondiagonalizability is characterized by a single gauge-invariant nonnegative

real number, which corresponds to the radius of a puffed vortex.
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3.1 Action and equations of motion

We will be interested in the commutative d-dimensional U(H) gauge theory which is equiva-

lent to a (d+2)-dimensional U(1) gauge theory on Rd+2 with two noncommuting directions

and adjoint matter. The U(1) field strength has several new nontrivial components, in ad-

dition to the old magnetic component of eq. (2.7). If we use Greek indices to denote the

commutative directions zµ and w and w for the noncommutative directions, then the mixed

components of the field strength are

Fµw = ∂µA − ∂wAµ + i[Aµ, A] = i∂µC + [Aµ,−a† + iA] = i∂µC − [Aµ, C] = iDµC (3.1)

and similarly

Fµw = −iDµC. (3.2)

Letting uppercase Roman letters run over zµ, w and w, the (m+2)-dimensional U(1) gauge

theory action can be written (using the mostly minus metric)

S =

∫

dzmdwdw(−1

4
FMNFMN +

1

2
DMφDMφ − V (φ)) (3.3)

where the covariant derivative of φ is defined by

DMφ = ∂Mφ + i[AM , φ]. (3.4)

We now expand the w and w dependence of the fields in a 2-dimensional basis of

functions whose coefficients are defined to be the fields in the d-dimensional U(H) gauge

theory. We may express components of F with one leg along a noncommutative direction

using (3.1) and (3.2) and the component with both noncommutative legs using eq. (2.7).

Then the action (3.3) can be written entirely in terms of the infinite-dimensional matrices

of the d-dimensional theory

S =

∫

dzmTrH

(

− 1

4
FµνFµν + DµCDµC − 1

2
([C,C ] + 1)2

+
1

2
DµφDµφ − [C,φ][C,φ] − V (φ)

)

. (3.5)

A complete set of equations of motion can now be found by setting the variations with

respect to φ, C, C and Aµ to zero. These variations respectively lead to the following

equations of motion

DµDµφ + [C, [φ,C ]] + [C, [φ,C]] + V ′(φ) = 0 (3.6)

DµDµC + [C, [C,C ]] + [φ, [C,φ]] = 0 (3.7)

DµDµC + [C, [C,C]] + [φ, [C,φ]] = 0 (3.8)

DµFµν − i([C,DνC] + [C,DνC] + [φ,Dνφ]) = 0 (3.9)

which reduce to eqs. (2.9), (2.10), (2.11) in the case d = 0 as they must.

The solutions of the d = 0 matrix theory case easily generalize to solutions in this

case, one need only assert that all fields are constant along the d commutative directions
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zµ and that Aµ is identically zero. These generalizations correspond to stacks of N flat

codimension two branes. When the functions g and h in the solution (2.33) are zero, then

these branes are centered at the origin of the w, w plane. Not all such configurations are

gauge equivalent, because one must still choose the N complex eigenvalues αi which yields a

moduli space C
N/ZN of seemingly inequivalent brane configurations, these configurations

are related by a global symmetry, although they are related by a gauge symmetry up

to an arbitrarily small correction. It is tempting to identify this space of Wilson lines

with the positions of the branes, however such positions are in general not well-defined

in a noncommutative gauge theory and so instead in the next section we will use these

eigenvalues as definitions of the positions. We will see below that if one relaxes the z-

independence of C then the αi lead to a kind of electric dipole moment despite the lack

of electric charges in the solution and even to puffed solutions of N vortices in which the

upper-left N × N block of C is not diagonalizable.

3.2 Electric dipoles and polarized branes

Consider the aforementioned z-independent solution with g = h = Aµ = 0, describing N

straight codimension 2 branes extending along the z directions with a trivial longitudinal

connection. We have noted that these configurations are parameterized by the complex

eigenvalues αi. Now allow the αi to depend on z. In section 4 we will consider solutions in

which the α block is not diagonalizable, for now we will restrict our attention to solutions

in which it is, and we will consider a basis in which it is diagonal and we will furthermore

set all commutative components of the gauge field to zero, as well as off-block diagonal

components of the gauge field in the noncommutative directions, which correspond to

tachyonic instabilities [1]. This leaves us with the solutions

φ = φ∗(1 − PN ), C(z) =
N−1
∑

i=0

αi(z)|i〉〈i| + SNa†S̄N , Aµ(z) = 0. (3.10)

Now the αi appear on the diagonal of C and so commute with φ, C and C. There-

fore they do not contribute to eq. (3.6) and they only contribute to the first term in

eqs. (3.7), (3.8). As Aµ = 0, the αi also do not contribute to eq. (3.9). Thus the only

constraint on the αi comes from the first term of eqs. (3.7), (3.8), which in the case Aµ = 0

reduces to the wave equation

∂µ∂µαi = 0 (3.11)

as noted in ref. [15].

To interpret the solutions, first consider the special case d = 1. As the signature of

the spacetime does not affect the formal considerations here, we will consider the single

commutative direction to be the time t. The wave equation (3.11) then implies that the

αi are linear

αi = ci + dit. (3.12)

The ci are Wilson lines as in the time-independent case. The new elements are the di. As

the αi are diagonal, they resemble the vector potentials for the U(1)N ⊂ U(N) gauge group

that lives on the stack of N branes, except that they are perpendicular to the worldvolumes.
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The electric fields on the worldvolumes are the time derivatives of the vector potentials,

therefore the ith brane has an electric field

Ex = di + d∗i , Ey = i(di − d∗i ). (3.13)

These electric fields are not parallel to the branes, they are orthogonal, and so they are

also not a part of the worldvolume gauge theory. They are instead worldvolume electric

fields in the U(1) gauge theory of the spacefilling brane. In the worldvolume theory of

the spacefilling brane, the codimension 2 branes are magnetic vortices. The di imply

that in addition to a magnetic flux running along the brane, there is also an electric flux

perpendicular to the brane. In other words, the branes have an electric dipole moment,

despite the fact that there is no electrically charged matter in the theory except for the

off-diagonal components of the gluons, whose values are equal to zero in this solution.

This appears to be a novel phenomenon in noncommutative gauge theories, an electric

dipole moment can exist without a source. In the commutative limit it smears out and

becomes a constant electric flux which is supported by boundary conditions, but in the

noncommutative case it exists as a localized lump.

The field strength of a magnetic flux tube in a commutative gauge theory is perpen-

dicular to the tube. The di component on the other hand has one leg perpendicular to the

tube and one leg along the tube. Thus the total field strength 2-form is slanted, along an

axis determined by the phase of di and by an amount proportional to the arctangent of

the magnitude of di. We will refer to such solutions as polarized branes.

Returning to the case of an arbitrary number of commutative directions d, the deriva-

tive of αi in each commutative direction is a magnetic flux component perpendicular to

the magnetic vortex, therefore again we find polarized branes. However when m > 1,

eq. (3.11) admits wave solutions, and so the perpendicular polarizations of the magnetic

fields propagate.

3.3 What is position?

A noncommutative spacetime is not really composed of points, in the sense that there are

gauge transformations which translate any field which transforms in a nontrivial represen-

tation of a gauge group. Technically translations of the whole spacetime are not gauge

symmetries because they do not vanish at infinity [16] and so can be fixed by the boundary

conditions of the path integral. However we will be interested in vortex solutions which,

at least almost everywhere, vanish at infinity in the noncommutative directions and such

solutions may be translated by legitimate gauge transformations which fall off sufficiently

quickly at infinity.

Our solutions are composed of two fields, the gauge field and the adjoint scalar, both

of which transform in the adjoint representation of the gauge group. Explicitly, via a global

transformation

φ −→ ewa†−w†aφe−wa†+w†a (3.14)

C −→ ewa†−w†aCe−wa†+w†a

Aµ −→ ewa†−w†a(Aµ − i∂µ)e−wa†+w†a
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one can move the core of a vortex to any codimension 2 submanifold of spacetime that

intersects each noncommutative plane precisely once without changing the energy of the

solution. This is in contrast with the commutative case in which one expects that the

energy depends on the volume of the vortex. Even more seriously, one may truncate this

global transformation by projecting it with a projector whose rank is much higher than the

charge of the vortex, in this case the truncated action on the vortex will be arbitrarily close

to that of the global transformation (3.14), but it will be a gauge transformation. Therefore

vortices whose φ,C and Aµ profiles have dramatically different centers, for example straight

branes and sine curves, are gauge-equivalent.

Therefore it appears that the position of a vortex in a noncommutative gauge theory

is a gauge artifact. However, in ref. [1] Gross and Nekrasov point out that gauge-invariant

operators have well-defined distributions. Therefore they define a gauge-invariant notion of

the spatial distribution of a soliton as the distribution of these gauge-invariant operators.

They quickly ran into the problem that the different gauge-invariant operators that they

defined did not agree on the form-factors of the internal structure of the vortex, however

they did provide an apparently well-defined notion of the location of the core of the vortex,

at least in the case in which the vortex’s position is independent of time and space. Recall

that in this case the top-left N ×N block of the C matrix of a charge N vortex is diagonal-

izable with eigenvalues αi. They found that their gauge-invariant operators are centered

on N points on the complex w plane, which are equal to the N eigenvalues αi, as had

already been conjectured in ref. [7] based on an analogy with matrix theory. Subsequent

authors [15, 17, 18] adopted the claim of [7] that this result extends to solutions which

are not uniform in the commutative directions. The identification of position with Wilson

lines resembles the T-dual position of a D-brane that wraps a circle, however in this case

the vortex does not actually extend along the noncommutative directions.

We will now momentarily restrict our attention to the class of solutions (3.10). The

commutative functions αi(z) are solutions to the wave equations (3.11). Hence they can be

interpreted as minimal area codimension 2 worldvolumes for lower dimensional D-branes.

While in the pure noncommutative theory the αi’s are actually moduli of the solution, here

they are solutions to the d’Alembert equations and so the time-independent solutions are

characterized by the momenta of their Fourier transforms. The functions αi are eigenvalues

of the tensor C and so are gauge invariant, therefore they define in an unambiguous way

the actual positions of the lower dimensional D-branes in the transverse direction. We

note however that these solutions solve the equations of motion in a somewhat trivial way.

Indeed every monomial in the equations of motion vanishes individually.

Gross and Nekrasov defined the positions of these vortices using two distinct gauge-

invariant operators. First, they considered adding fundamental fermion probes ψ to the

theory. While the fermion field ψ itself is gauge-dependent, and so its position is ill-

defined, the bilinear ψ†ψ is a gauge singlet. Fermions satisfy the Dirac equation, which in

the noncommutative dimensions is

0 = D̃ψ1 = ∂wψ1 + iAψ1 = [w,ψ1] + iAψ1 = Cψ1 − ψ1w

0 = Dψ2 = ∂wψ2 + iAψ2 = −[w,ψ2] + iAψ2 = −Cψ2 + ψ2w (3.15)
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where ψ1 and ψ2 are left and right handed Weyl fermions and a = w, a† = w̄ . Notice that

although the fermions transform in the fundamental representation of the gauge group,

the Weyl transformation means that they are represented by matrices and transform in

the adjoint of the Heisenberg algebra. Using this definition of fundamental fermions, in

which the connection acts on these matrices on the left, the covariant derivatives of the

left handed and right handed fermions are not conjugates. This would have been the case

if instead one had imposed that A act on ψ1 via right multiplication. Perhaps such a

definition of fundamental fermions would be interesting to investigate.

The normalizable zeromodes consist of matrices ψ1 whose right eigenvalues under the

position operator w are equal to the eigenvalues αi of the connection C. Therefore the

eigenvalues of the position operator w on the bilinear ψ†ψ from either the right or left are

just the αi, and so a charge N vortex has N fermion zero modes whose wavefunctions are

each centered at the position corresponding to the eigenvalue αi. Intuitively, the Dirac

equation (3.15) just imposes that the position w of a fermion charged under a particular

U(1) is just equal to the Wilson line αi of that U(1). As the fermion position is gauge

invariant, Gross and Nekrasov then define the location of the fermions to be the location

of the vortex. They also define the density of the vortex to be that of the fermions, which

they found to be Gaussians of width
√

θ.

In the case of puffed branes we will see that some of the fermionic zeromodes are lifted,

and the others are invariant under the puffing parameter. Instead the gauge-invariant

data will be captured by another gauge-invariant operator, which in the case of the so-

lutions (3.10) is also centered on the points αi, although it is focused at delta functions

and in fact its normalization is not canonically defined and so with a suitable choice of

normalization it can yield any form factors for the brane.

The trace of C is gauge-invariant, and it captures the center of mass of the vortices.

To capture the positions of all of the vortices, [1] consider instead a kind of Wilson loop

W (q) = tr
(

eq̄C−qC̄
)

. (3.16)

Note that even if the C field is not Hermitian, the exponent of the Wilson loop is anti-

Hermitian. Ordinarily a Wilson loop is integrated over a closed loop. In noncommutative

space the trace of an infinite-dimensional matrix C is the same as the integral of the Weyl

transformed U(1) gauge field. Therefore W (q) is a kind of integral over all of the Wilson

lines oriented in the q direction, weighted by |q|. The definition of the distribution of a

vortex in ref. [1] is that the momentum space distribution be identified with W (q). They

then identify the Fourier transform of W (q) with the position distribution, which is the

Fourier transform of a plane wave. A quick calculation shows that this is just a sum of

Dirac delta functions centered at the points αi on the noncommutative plane.

4. Puffed vortices

In ref. [19] the authors find that the moduli space of vortices in a noncommutative scalar

field theory is modified by θ corrections when two vortices intersect. As a result the

expected singularity is blown up into a compact, nonsingular projective space. We consider

– 12 –



J
H
E
P
0
4
(
2
0
0
7
)
0
3
7

a noncommutative gauge theory to all orders in θ and find, not surprisingly, a different

moduli space of solutions. Again we find that the moduli spaces of solutions has an extra

degree of freedom when multiple vortices coincide, however in the present case we will see

that this extra direction is noncompact as in the case of semilocal vortices [5, 6]. In the case

of charge 2 vortices there is a single additional nonnegative real gauge-invariant quantity.

Defining the vortex profile using the Wilson lines introduced by Gross and Nekrasov, we

will see that coincident vortices puff up into rings of domain walls as in refs. [2 – 4] and

that the extra parameter is the radius of the ring.

To find the puffed vortex solutions, we will slightly relax our ansatz (3.10) by allowing

the N×N upper left block of C to be arbitrary, without changing the other components and

without changing φ. In this case there are gauge-inequivalent new solutions only when the

minimal polynomial of its Chan-Paton matrix has degenerate linear factors, corresponding

intuitively to degenerate eigenvalues, otherwise one can always bring it back in diagonal

form by using a U(N) ⊂ U(H) gauge transformation. We will now restrict our attention to

charge 2 vortices, so that C has a 2 dimensional degenerate eigenspace. Unlike φ, C does

not have to be Hermitian and if it is not diagonalizable then it is not Hermitian, however

a U(2) gauge transformation can bring it into the Jordan form

C2(z) =

(

α(z) β(z)

0 α(z)

)

. (4.1)

By performing a gauge transformation generated by σ3 it is easy to see that the phase of

β(z) is a gauge artifact. Only the modulus |β| is a gauge-invariant quantity. For simplicity

we will partially fix the gauge by choosing the Jordan canonical form of the 2×2 upper-left

block of C with β real, but we will not use the gauge freedom to force β to be positive, as

the corresponding gauge transformations will not be differentiable in the space-dependent

solutions below.

We will now use the Wilson loops of ref. [1] to attempt to physically interpret the

gauge-invariant parameter |β|. From now on we will just concentrate on the rank 2 block

containing β. The Wilson loop is

eq̄C−qC̄ = eq̄α−qᾱ cos(|q|β)

(

1 tan(|q|β) q̄
|q|

− tan(|q|β) q
|q| 1

)

. (4.2)

Taking the trace, the (additive) contribution from this block is

w(q) = 2 eq̄α−qᾱ cos(|q|β).

According to the Gross-Nekrasov prescription, q should now be identified as a gauge-

invariant momentum coordinate for the state described by the Wilson loop. To relate β to

the position of the vortex, we must first Fourier transform w(q) to position space

ŵ(x) =
1

(2π)2

∫

d2q w(q) ei(qx̄+q̄x) =
2

(2π)2

∫

d2q ei(q̄xα+qx̄α)cos(|q|β) (4.3)

where we have defined the complex position xα = x − iα.
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Figure 1: Profile of the Wilson lines in the presence of a puffed brane. The Wilson lines are largest

on a ring of radius equal to the gauge-invariant parameter β.

Going to polar coordinates q = ρ eiθ, xα = r eiφ, splitting the cosine in two exponen-

tials, shifting the integration variable θ → θ + φ and introducing an ε-cutoff for the radial

integration we get

ŵ(x) =
1

(2π)2

∫

dθ ρ dρ
(

e[i(r cosθ+β)−ε]ρ + e[i(r cosθ−β)−ε]ρ
)

(4.4)

Keeping ε only where it is needed, the integral can be evaluated analytically

ŵ(x) = − 1

2π

β

(β + r)
3

2

(

1

(β − r − iε)
3

2

+
1

(β − r + iε)
3

2

)

. (4.5)

Note that this field configuration is real, as it should be, and it is axially-symmetric

with respect to the position of the β-unperturbed vortices x = iα. The distribution ŵ(x)

describes a thin circular shell of radius β surrounding the original vortices positions, as seen

in figure 1. Turning β down to zero the shell shrinks and one arrives at the old solution

describing two coincident pointlike vortices at iα.

Recall that there is a second gauge-invariant definition of the spatial profile of a solu-

tion, one may couple the system to fundamental fermion probes and use the profile of the

fermion bilinears. If one includes a single additional dimension z, then one may probe the

system with a 3-dimensional Dirac fermion Ψ with two complex (matrix valued) compo-

nents ψ1 and ψ2 which satisfy the Dirac equation

∂zψ1 − Cψ2 + ψ2a
† = 0

−∂zψ2 + Cψ1 − ψ1a = 0. (4.6)
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In general a rank N vortex solution has N fermion zero modes if it is independent of the

z coordinate. However, as we will explain presently, when β is nonzero the equations of

motion demand that the vortices always depend on the z coordinate. This lifts some of

the fermion zero modes.

For example, in the case of the puffed charged two vortices that we have analyzed,

when β is nonzero one of the fermion zero modes is unaffected, the generator of the zero-

eigenspace of C, while the other if lifted. The unaffected fermion is insensitive to β, and so

cannot be used as a probe, it is always equal to the tensor product of the oscillator ground

state with a coherent state with coefficient equal to the position of the center of the puffed

vortex, so that its bilinear is an eigenstate of the position operator centered in the center

of the vortex.

The fate of the lifted zeromode is more interesting. While it is no longer a zeromode,

one may find an exact solution to the Dirac equation that describes its evolution in the

commutative direction. If, for simplicity, the puffed vortex is centered on the origin, then

the individual matrix elements of the fermion are not all coupled in the Dirac equation,

they appear in isolated groups of 4, corresponding to various background configurations.

The lifted zeromode only appears in one of these groups. If we write explicitly the

matrix form of the components of the Dirac fermion Ψ as

ψ1,2 =
∞
∑

q=0

(

ρq
1,2|0〉〈q|

γq
1,2|1〉〈q|

)

(4.7)

then the Dirac equation for the lifted zeromode is simply

∂zρ
0
1 = β γ0

2

∂zγ
1
1 = γ0

2

∂zγ
0
2 = β ρ0

1 − γ1
1 . (4.8)

This system of homogeneous linear differential equations is solved by linear combinations

of three generalized hypergeometric functions. However no linear combination of these

functions appears to be normalizable for the solutions found below, and so we cannot use

the locations of the fermion bilinears to define the positions of our solutions, as was possible

in the β = 0 case studied by Gross and Nekrasov.

Now that we have understood the meaning of β, we may attack the problem of its

evolution under the equations of motion. Inserting the ansatz (4.1) into the equations of

motion, one sees that the φ equation is unaffected, and the same is true for the Aµ’s (if

β is not real, then one should compensate for its phase with a corresponding pure gauge

shift in Aµ). The only nontrivial equation is that obtained by varying C. Assuming that

for β = 0 we have a solution (that is ¤α = 0), turning on β implies the equation

¤β + 2β3 = 0. (4.9)

We do not know how to solve this equation in general, but we will study two treatable

cases.
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Figure 2: Time-independent solutions in which the radius β depends on a single spatial dimension:

they are funnels in which the radius β reaches infinity at a finite point. These solutions are smooth

and describe a vortex ending on a domain wall. These are limits of solutions describing a vortex

stretched between two parallel domain walls

First we classify static solutions in which β depends only on a single spatial variable

zi = x. The equation then becomes

d2β

dx2
= 2β3 (4.10)

Bearing in mind that only the modulus of β is gauge-invariant, a one parameter family of

solutions is given by

|β(x)| =
1

|x − x0|
. (4.11)

This solution has two distinct branches, one at x < x0 and one at x > x0, which is depicted

in figure 2. Each branch describes a D23-brane that ends on a D24.

Another interesting class of solutions arises when we take β to be time-dependent

(z0 = t) but spatially homogeneous. In this case the differential equation becomes

d2β

dt2
= −2β3. (4.12)

A solution to this equation is given by

β(t) = adn(a(t − t0), 2) (4.13)

where dn is a Jacobi elliptic function.

This solution looks roughly like a string of ellipsoids attached end to end, although

the derivative of β is always finite so each intersection is just the union of two opposing
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Figure 3: Spatially-homogeneous time-dependent solution describing a braneworld cyclic universe

cones that touch at their tips, as illustrated in figure 3. Each ellipsoid represents a bubble

nucleating at some time t0, expanding to some maximal size and then decaying back to a

point after a period. Note that the Wick rotation of such solutions,

β(x) = bdn(ib(x − x0), 2) , (4.14)

gives a real space-dependent solution, which have periodic singularities on an array defined

by the initial conditions, the period being 2/bK(−1), with K(q) the complete elliptic

integral of the first kind. Such extra solutions can be interpreted as D23 branes stretched

between two D24’s. On the other hand the special space-solution (4.11), does not admit a

real inverse Wick rotation, so it does not generate an extra time dependent solution. Notice

moreover that this special solution is obtained from (4.14) by taking x0 = K(−1)/b, and

sending b → 0.

Such solutions generally have tachyonic instabilities at the tips of the cones, but these

are of little concern here as the vortices in this note all suffer from tachyonic instabilities

everywhere. They can be stabilized, for example, if one modifies the potential energy so as

to spontaneously break the U(1) gauge symmetry at infinity.

Notice that the adjoint scalar plays no role in these vortex solutions, although their

forms are fixed by the charge of the vortex. The solutions discussed in this note are

therefore also solutions to the pure gauge theory. We expect that many other interesting

solutions can be found.

As a side remark we would like to comment on the relation with Open String Field

Theory, observing that working at finite θ seems to mark a profound difference with respect

to the infinite noncommutative limit. In particular, at infinite θ there is a one to one

correspondence between noncommutative solitons and String Field Theory solutions [20 –

22] (where the string field is basically the noncommutative tachyon). At finite θ, on the

other hand, there is no way to get rid of the gauge connection, and the tachyon field plays a
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minor role (and could be even thrown away without changing the relevant physics). From

a formal field theory point of view this is for us no surprise as both the gauge field and the

open string field are the connection of two infinite dimensional gauge groups that share lot

of similarities [16]. While it is understood that U(1) noncommutative gauge theory is the

low energy limit of OSFT on a D25-brane with a constant B-field on its worldvolume, it

seems that the two theories are very different in the way they are classically solved. It would

be therefore interesting to understand the relations (if any) between classical solutions of

the two theories, in particular to find the OSFT counterpart of our puffed solutions. It is

clear that this question will only be addressable once classical solutions for multiple and

lower dimensional D-branes will be understood in OSFT.
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